Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Immunol ; 14: 1190416, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-20242838

RESUMEN

Accurate identification of beneficial mutations is central to antibody design. Many knowledge-based (KB) computational approaches have been developed to predict beneficial mutations, but their accuracy leaves room for improvement. Thermodynamic integration (TI) is an alchemical free energy algorithm that offers an alternative technique for identifying beneficial mutations, but its performance has not been evaluated. In this study, we developed an efficient TI protocol with high accuracy for predicting binding free energy changes of antibody mutations. The improved TI method outperforms KB methods at identifying both beneficial and deleterious mutations. We observed that KB methods have higher accuracies in predicting deleterious mutations than beneficial mutations. A pipeline using KB methods to efficiently exclude deleterious mutations and TI to accurately identify beneficial mutations was developed for high-throughput mutation scanning. The pipeline was applied to optimize the binding affinity of a broadly sarbecovirus neutralizing antibody 10-40 against the circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron variant. Three identified beneficial mutations show strong synergy and improve both binding affinity and neutralization potency of antibody 10-40. Molecular dynamics simulation revealed that the three mutations improve the binding affinity of antibody 10-40 through the stabilization of an altered binding mode with increased polar and hydrophobic interactions. Above all, this study presents an accurate and efficient TI-based approach for optimizing antibodies and other biomolecules.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2/genética , Anticuerpos , Termodinámica , Mutación , Anticuerpos ampliamente neutralizantes
3.
Cell ; 186(2): 279-286.e8, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: covidwho-2158568

RESUMEN

The BQ and XBB subvariants of SARS-CoV-2 Omicron are now rapidly expanding, possibly due to altered antibody evasion properties deriving from their additional spike mutations. Here, we report that neutralization of BQ.1, BQ.1.1, XBB, and XBB.1 by sera from vaccinees and infected persons was markedly impaired, including sera from individuals boosted with a WA1/BA.5 bivalent mRNA vaccine. Titers against BQ and XBB subvariants were lower by 13- to 81-fold and 66- to 155-fold, respectively, far beyond what had been observed to date. Monoclonal antibodies capable of neutralizing the original Omicron variant were largely inactive against these new subvariants, and the responsible individual spike mutations were identified. These subvariants were found to have similar ACE2-binding affinities as their predecessors. Together, our findings indicate that BQ and XBB subvariants present serious threats to current COVID-19 vaccines, render inactive all authorized antibodies, and may have gained dominance in the population because of their advantage in evading antibodies.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , Evasión Inmune , SARS-CoV-2 , Humanos , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19 , SARS-CoV-2/clasificación , SARS-CoV-2/genética
4.
Cell Host Microbe ; 30(11): 1512-1517.e4, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: covidwho-2118001

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariant BA.2.75 emerged recently and appears to be spreading. It has nine mutations in spike compared with the currently circulating BA.2, raising concerns that it may further evade vaccine-elicited and therapeutic antibodies. We found BA.2.75 to be moderately more neutralization resistant to sera from vaccinated/boosted individuals than BA.2 (1.8-fold), similar to BA.2.12.1 (1.1-fold), but more neutralization sensitive than BA.4/5 (0.6-fold). Relative to BA.2, BA.2.75 showed heightened resistance to class 1 and class 3 monoclonal antibodies targeting the spike-receptor-binding domain while gaining sensitivity to class 2 antibodies. Resistance was largely conferred by G446S and R460K mutations. BA.2.75 was slightly resistant (3.7-fold) to bebtelovimab, a therapeutic antibody with potent activity against all Omicron subvariants. BA.2.75 also exhibited a higher binding affinity to host receptor ACE2 than other Omicron subvariants. BA.2.75 provides further insight into SARS-CoV-2 evolution as it gains transmissibility while incrementally evading antibody neutralization.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pruebas de Neutralización , Anticuerpos Monoclonales , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes
6.
Nature ; 608(7923): 603-608, 2022 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1921637

RESUMEN

SARS-CoV-2 Omicron subvariants BA.2.12.1 and BA.4/5 have surged notably to become dominant in the United States and South Africa, respectively1,2. These new subvariants carrying further mutations in their spike proteins raise concerns that they may further evade neutralizing antibodies, thereby further compromising the efficacy of COVID-19 vaccines and therapeutic monoclonals. We now report findings from a systematic antigenic analysis of these surging Omicron subvariants. BA.2.12.1 is only modestly (1.8-fold) more resistant to sera from vaccinated and boosted individuals than BA.2. However, BA.4/5 is substantially (4.2-fold) more resistant and thus more likely to lead to vaccine breakthrough infections. Mutation at spike residue L452 found in both BA.2.12.1 and BA.4/5 facilitates escape from some antibodies directed to the so-called class 2 and 3 regions of the receptor-binding domain3. The F486V mutation found in BA.4/5 facilitates escape from certain class 1 and 2 antibodies but compromises the spike affinity for the viral receptor. The R493Q reversion mutation, however, restores receptor affinity and consequently the fitness of BA.4/5. Among therapeutic antibodies authorized for clinical use, only bebtelovimab retains full potency against both BA.2.12.1 and BA.4/5. The Omicron lineage of SARS-CoV-2 continues to evolve, successively yielding subvariants that are not only more transmissible but also more evasive to antibodies.


Asunto(s)
Anticuerpos Antivirales , Deriva y Cambio Antigénico , COVID-19 , Mutación , SARS-CoV-2 , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/uso terapéutico , Deriva y Cambio Antigénico/genética , Deriva y Cambio Antigénico/inmunología , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Humanos , Inmunización Secundaria , Receptores Virales/metabolismo , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo
7.
Sci Transl Med ; 14(646): eabn6859, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1794534

RESUMEN

The devastation caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made clear the importance of pandemic preparedness. To address future zoonotic outbreaks due to related viruses in the sarbecovirus subgenus, we identified a human monoclonal antibody, 10-40, that neutralized or bound all sarbecoviruses tested in vitro and protected against SARS-CoV-2 and SARS-CoV in vivo. Comparative studies with other receptor-binding domain (RBD)-directed antibodies showed 10-40 to have the greatest breadth against sarbecoviruses, suggesting that 10-40 is a promising agent for pandemic preparedness. Moreover, structural analyses on 10-40 and similar antibodies not only defined an epitope cluster in the inner face of the RBD that is well conserved among sarbecoviruses but also uncovered a distinct antibody class with a common CDRH3 motif. Our analyses also suggested that elicitation of this class of antibodies may not be overly difficult, an observation that bodes well for the development of a pan-sarbecovirus vaccine.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Humanos , Isotipos de Inmunoglobulinas , Glicoproteína de la Espiga del Coronavirus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA